Rapid prototyping of three-dimensional microfluidic mixers in glass by femtosecond laser direct writing.

نویسندگان

  • Yang Liao
  • Jiangxin Song
  • En Li
  • Yong Luo
  • Yinglong Shen
  • Danping Chen
  • Ya Cheng
  • Zhizhan Xu
  • Koji Sugioka
  • Katsumi Midorikawa
چکیده

The creation of complex three-dimensional (3D) microfluidic systems has attracted significant attention from both scientific and applied research communities. However, it is still a formidable challenge to build 3D microfluidic structures with arbitrary configurations using conventional planar lithographic fabrication methods. Here, we demonstrate rapid fabrication of high-aspect-ratio microfluidic channels with various 3D configurations in glass substrates by femtosecond laser direct writing. Based on this approach, we demonstrate a 3D passive microfluidic mixer and characterize its functionalities. This technology will enable rapid construction of complex 3D microfluidic devices for a wide array of lab-on-a-chip applications.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Compact 3D Microfluidic Channel Structures Embedded in Glass Fabricated by Femtosecond Laser Direct Writing

We demonstrate rapid fabrication of complex three-dimensional (3D) microfluidic channels with lengths up to ~6.0 cm within a tiny volume down to ~80 nl in glass substrates by femtosecond laser direct writing, which, to the best of our knowledge, is the longest microfluidic channel directly embedded in glass by femtosecond laser microprocessing. The fabrication mainly includes the following two ...

متن کامل

Rapidly prototyped three-dimensional nanofluidic channel networks in glass substrates.

Microfluidic and nanofluidic technologies have long sought a fast, reliable method to overcome the creative limitations of planar fabrication methods, the resolution limits of lithography, and the materials limitations for fast prototyping. In the present work, we demonstrate direct 3D machining of submicrometer diameter, subsurface fluidic channels in glass, via optical breakdown near critical...

متن کامل

Femtosecond Laser 3D Fabrication in Porous Glass for Micro- and Nanofluidic Applications

The creation of complex three-dimensional (3D) fluidic systems composed of hollow microand nanostructures embedded in transparent substrates has attracted significant attention from both scientific and applied research communities. However, it is by now still a formidable challenge to build 3D microand nanofluidic structures with arbitrary configurations using conventional planar lithographic f...

متن کامل

Advances in three-dimensional rapid prototyping of microfluidic devices for biological applications.

The capability of 3D printing technologies for direct production of complex 3D structures in a single step has recently attracted an ever increasing interest within the field of microfluidics. Recently, ultrafast lasers have also allowed developing new methods for production of internal microfluidic channels within the bulk of glass and polymer materials by direct internal 3D laser writing. Thi...

متن کامل

Femtosecond Laser Fabrication of Monolithically Integrated Microfluidic Sensors in Glass

Femtosecond lasers have revolutionized the processing of materials, since their ultrashort pulse width and extremely high peak intensity allows high-quality micro- and nanofabrication of three-dimensional (3D) structures. This unique capability opens up a new route for fabrication of microfluidic sensors for biochemical applications. The present paper presents a comprehensive review of recent a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Lab on a chip

دوره 12 4  شماره 

صفحات  -

تاریخ انتشار 2012